

## Homework:

The diagram above shows a quadratic graph with the equation $y=2 x^{2}+15 x+18$. Line $A B$ has point ( -$18,-15.72$ ) along its length and meets the interception of the $x$-axis with the higher root of the quadratic. Line $C D$ is perpendicular to the line $A B$. $C D$ runs through the interception of the lower root with the $x$ axis.

At what point does $A B$ and $C D$ intersect?

## Help:

1. Calculate the roots of the quadratic curve;
2. Use the upper root and the point given on $A B$ to calculate an equation for $A B$;
3. Use the lower root and the equation for $A B$ to calculate an equation for $C D$;
4. Solve $A B$ and $C D$ simultaneously to find the intersection of $A B$ and $C D$.


DO NOT SCALE
$A B C D$ is an oblong. $B$ is located at the origin of the graph. $C D$ and $A B$ are 1.6 times the length of $B C$. Point $C$ is located at $(3,-4)$. Labels are placed at 1 cm intervals upon the axes.
i) Find the equation of line $B C$.
ii) Find the equation of line DC.
iii) Find the co-ordinates of point $A$.
iv) Calculate the area of the oblong.

For the following equations, find the equation of a parallel line that goes through the point specified and the perpendicular line that goes through the point specified:

1. $\mathrm{y}=4 \mathrm{x}+7$
$(8,9)$
2. $y=7 x+3$
$(12,5)$
3. $y=5 x+6(7,3)$
4. $3 y+2 x=12(3,8)$
5. $6 y+5 x=18(8,-7)$
6. $7 y+3 x+12=23 \quad(7,9)$
7. $3(y+3)-5(x+8)+6(2-4 y)=51(9,10)$
